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Abstract—With the emergence of cloud computing, on-demand
resources usage is made possible. This allows applications to
scale out elastically according to the load. One design pattern
that suits this paradigm is the event-driven architecture (EDA)
in which messages are sent asynchronously between distributed
application instances using message queues. However, existing
message queues are only able to scale for a certain number of
clients and are not able to scale out elastically. We present EQS,
an elastic message queue architecture and a scaling algorithm
which can be adapted to any message queue in order to make
it scale elastically. EQS architecture is layered onto multiple
distributed components and its management components can
be integrated with the cloud infrastructure management. We
have implemented a prototype of EQS and deployed it on a
cloud infrastructure. A series of load testings have validated our
elastic scaling algorithm and show that EQS is able to scale out
in order to adapt to an applied load. We then discuss about
the elastic scaling of the management layers of EQS and their
possible integration with cloud infrastructure management.

I. INTRODUCTION

Nowadays, many applications are developed on a cloud
environment. However, in order to make them scalable and
fully elastic, we need to adopt new design patterns. The
event-driven architecture (EDA) is probably the most im-
portant architectural pattern used in the cloud for making
applications scale. Indeed, this pattern enables asynchronous
communication between distributed application instances and
fits perfectly to the dynamic and elastic nature of the cloud.
** tout ce qui suit n’est pas clair, on ne voit pas ou veut-on en
venir *** Going further, the Infrastructure as a Service (IaaS)
management components, such as the decision layer used
for auto-scaling decisions, the monitoring system, and other
components of the cloud infrastructure all require adapted
messaging middlewares in order to efficiently transport the
tremendous number of control messages they receive. These
messaging middlewares would have to be highly scalable and
should scale elastically.

Today, the most efficient message buses only comply with
the first condition: they are scalable. In addition, they are
designed to be scalable only for a few number of producers
and listeners, which is not the case in a cloud environment
where one could face several hundred thousand listeners
and producers. Finally, they are not elastic and cannot scale
dynamically according the load.
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Fig. 1. The three layers in the stack of a Messaging Oriented Middleware
(MOM) products. The idea behind EQS is to bring the architecture of the
MOM on the cloud in order to make use of the dynamic resource allocation
and scale elastically.

In this paper we propose an algorithm that can be adapted
to any message queue in order to render it fully elastic.
By elastic we mean exploiting the on-demand computing
resources of a cloud by dynamically mobilizing resources
and dismissing them when they are not needed any more.
In the case of an elastic message queue, this means that
according to the message throughput, the message queue can
be automatically and dynamically distributed on newly created
instances (scaling out) when it is required, or in the opposite
case, can be redistributed to a subset of queue instance nodes
(scaling in) when the load is less important.

The general idea of the algorithm is to dynamically adapt the
load by isolating the most important producers and listeners
and redirect them to a newly created instance of the same
queue. The objective is to balance the message throughput on
the different existing instances. We have developed a prototype
based on ZeroMQ1 and have evaluated its performance on
Amazon EC22.

II. BACKGROUND AND RELATED WORK

When referring to current existing Message Oriented Mid-
dlewares (MOMs), there are actually three distinct layers to
take into account. Figure 1 summarizes these three layers.

The first layer is the API at the application level which
defines a standardized set of calls between clients. One of the

1ZeroMQ: http://www.zeromq.org
2Amazon AWS: http://aws.amazon.com/ec2/

http://www.zeromq.org
http://aws.amazon.com/ec2/


most well-known API used to send messages between client
applications is JMS (Java Message Service)3.

Beneath the API application layer is the transport protocol
which is used to carry the messages at the wire level. Two
different MOM products which are interoperable should be
compliant at the API level but also use the same wire-level
protocol. An attempt at standardizing the wire-level protocol
is the Advanced Messaging Queuing Protocol (AMQP)4.

Underneath the wire-level protocol lies the architecture of
the MOM. In its most simple form, the architecture may
consist in direct point-to-point communication between appli-
cations, without requiring an intermediate element such as a
broker. In this category, we can cite for example the ZeroMQ
library, which offers enhanced socket communication allowing
N-N relationships between sockets and basic message filtering.

While in such architecture there are less elements to manage
and no apparent single point of failure, the lack of an interme-
diate element between clients implies that client applications
need to exactly know the address and nature of the recipients
they are sending messages to, and that both clients should be
alive at the same time at the moment of sending. Furthermore,
the complexity of the message delivery is pushed to the
clients which become each a performance bottleneck. Such
architecture offers no messaging element to scale out in order
to adapt the performance of the messaging to the actual load
and can thus not benefit from the dynamic resource allocation
made possible by cloud computing infrastructures.

In most of the MOM architectures there is a central element,
the broker, which is the common end-point for the clients of
the MOM. The broker asynchronously delivers messages from
a producer to a consumer. The producer does not need to know
the exact location or nature of the listener, it just delivers
its message to the broker which then in turn routes it to the
corresponding consumers. The broker thus knows where the
recipients are located and performs the sending of the message.

The AMQP protocol specifies a broker-based architecture
made of exchanges, bindings and queues. Exchanges are the
endpoints of the producers and host the queues. They receive
each message sent and route them to the corresponding queue
which are endpoints for the consumers. The routing of the
messages is based on the binding and the routing key contained
in the header of the message. Figure 2 describes a typical
brokered AMQP setup.

Because of its central nature, the broker is often seen as a
single point of failure and bottleneck in many MOM architec-
tures. As many works have already pointed out [1], [2], the
broker-centric design of AMQP represents a bottleneck to both
performance and scaling. Some implementations of AMQP
brokers, such as RabbitMQ5 for example, allow exchanges
to work in a clustered mode. In this setup, a broker consists
of a cluster of several exchanges working together. The state

3JMS-J2EE: http://www.oracle.com/technetwork/java/javaee/overview/
index.html

4The 1.0 draft of the protocol specification has just been released: http:
//www.amqp.org

5VMWare RabbitMQ: http://www.rabbitmq.com/server.html
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Fig. 2. Description of a typical AMQP broker setup. The binding actually
links a queue to an exchange and filters the messages that will be delivered
to the queue.

is shared among the nodes thanks to a shared database. Rab-
bitMQ uses for example the Erlang in-memory shared database
Mnesia. However, queues are not load balanced among the
exchanges and remain stored on the exchange where they
have been instantiated. When accessing a queue from another
exchange, the request is simply routed to the exchange where
the queue is assigned. This architecture involving a shared
state does not allow a cluster of an arbitrarily large number
of nodes. RabbitMQ clusters usually consists of a few nodes
and their overall performance even decreases as the size of the
cluster increases.

This design thus does not allow to increase the global
performance of the queue by scaling out new instances of
the MOM. This limitation prevents AMQP-based messaging
products to be deployed on a cloud computing infrastructure in
order to make use of the dynamic resource allocation so that
the queue performance is dynamically adapted to the actual
load.

To our knowledge the only successful implementation of a
broker-based MOM using a cloud computing infrastructure is
the Amazon Simple Queue Service (SQS)6. It is marketed as a
web service that developers can use on a pay-per-use model to
pass messages between applications. Very little is known about
the underlying broker architecture, except that it supposedly is
deployed on the Amazon Cloud infrastructure. Many reports
have however stated that SQS does not scale well with the
number of concurrent users [3]. Message throughput is also
low and latencies are high when compared to traditional MOM
products.

III. THE ELASTIC QUEUING SERVICE

In this section we present the architecture of EQS, a mes-
sage bus designed to enable elastic scalability, performance
and high-availability. Its design is targeted for a deployment on
a cloud computing infrastructure using commodity hardware.

A. Goals

The EQS architecture aims at answering the following goals
and requirements:

6Amazon SQS: http://aws.amazon.com/sqs/

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.amqp.org
http://www.amqp.org
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1) Elastic scalability: EQS copes with load increases by
scaling out instances. It makes use of dynamic resource
allocation provided by the cloud infrastructure to scale out
elastically. The performance is linear with the number of
instances.

2) High throughput: by spawning out additional instances,
EQS is able to adapt to any applied load and reach a high
amount of messages processed per time unit. The high perfor-
mance of EQS is not focused on its individual components nor
on single-instance configurations but comes from its ability to
elastically scale out.

3) Integration on a cloud: with all these considerations in
mind, EQS was designed from the beginning as a product
running on a cloud infrastructure. Many of its features should
integrate with functionalities provided by cloud infrastructure
providers (IaaS) and cloud platforms management. When
available, these functionalities and requirements should be
compliant with existing and upcoming standards for cloud
computing.

B. EQS Components

The architecture of EQS is distributed among different
components. In the following we provide a description of
them.

1) Producer and listener: These are the basic components
of EQS. A producer is a client which connects to a specific
queue in order to deliver a message. A listener is a client which
connects to a specific queue in order to retrieve a message.
There is no major restriction on the format or the nature of
the message as EQS only transmits bytes.

2) Exchange: The exchange is the low-level component
connecting producers and listeners. It receives a message on
its frontend and transmits it to the listeners connected to
its backend in a N-N relationship. The exchange is totally
stateless. It can perform specific delivery to the listeners
connected to its backend based on a routing key contained
in the message. Thanks to their stateless nature, exchanges
are the EQS components suitable for scaling-out in order to
adapt to the load.

3) Queue: A queue is the logical concept of the entity
used by producer and listener clients to transmit messages
concerning a particular subject. An EQS queue is comprised
of one or more exchanges, each one transmitting messages
concerning the same subject. Queues hide the complexity
behind exchanges and the other components of EQS to the
producers and listeners. A producer or listener which wants
to connect to a specific queue should only know the name or
the unique url of the queue. Figure 3 describes the topology
of an EQS queue.

Each queue is defined by a set of Key Performance Indi-
cators (KPIs) issued from a Service Level Agreement (SLA)
definition set. These KPIs define the quality of service level
that is expected and are specified by the customer owning the
queue. They describe, for example, the minimum guaranteed
throughput (number of messages delivered per time unit) of
the queue, which is defined for a fixed number of producers

and listeners connected to the queue and for a fixed message
payload.

4) Queue management: The queue management is the
organizational layer on top of the queue. It keeps a permanent
record of all the existing queues including their name, their
URLs, the associated SLA, the list of exchanges composing
the queue and their physical location. These information
constitute the metadata associated to a queue.

5) Monitoring: The monitoring component aggregates in-
formation over the health of the EQS service. It monitors the
KPIs at the EQS level and at the infrastructure level.

• At the EQS level, metrics specific to EQS are monitored
in order to determine the status of EQS exchanges. Those
metrics consist of the total number of messages processed
by the exchanges, the number of connected producer
and listener clients and the available bandwidth for each
exchange.

• At the infrastructure level, system metrics such as com-
ponent availability and resource usage are monitored.

At the same time, the monitoring component is able to induce
failover actions related to failure handling:

• producers and listeners are relocated to alternative free
exchanges, or new exchanges are created, in case of
failure.

• components of EQS are restarted when outage occurs.
In the case where EQS is used in the cloud management such
as mentioned in the introduction, the monitoring component,
given its ubiquitous nature, is best placed on the infrastructure
and platform manager of the cloud provider. In this context,
monitoring of EQS metrics should be defined in a standard
way in order to be integrated with existing cloud platform
management standards. Some cloud platforms management
projects, such as CLAUDIA [4] for example, already propose
that functionality. Figure 4 describes the integration of the
EQS management components to the management of the cloud
infrastructure.

6) Rules and scaling management: This component man-
ages the rules and the triggered actions regarding the defined
SLA. The rules and scaling management decide which actions
to take based on measures aggregated by the monitoring
component of EQS and also on external SLA and billing rules.
Triggered actions include:

• Scaling out and in of exchanges when load increases
or decreases, or when there is no more budget to keep
instances alive on the underlying cloud infrastructure.

• Relocation of producers from an exchange on other free
exchanges, if available and depending on the context,
when KPIs are reached.

• Relocation of producers and listeners on alternative ex-
changes when scaling in.

The scaling out of instances is based on the elastic algorithm
described in Section III-D

C. Interactions between EQS components
All the components described in the previous section work

together in order to compose the EQS. In this section we



Exchange

Queue

ListenerProducer Exchange Exchange

Fig. 3. An EQS queue is comprised of several exchanges, each transiting a
portion of total traffic on the queue

Cloud Infrastructure Management

Rules and scaling 
Management

Queue 
ManagementMonitoring

Producer Listener

Queue

Queue

Queue

Fig. 4. EQS components deployed on a cloud computing infrastructure.

will present these interactions along particular use cases and
workloads which describe the behavior of the EQS while in
production.

1) Producer/listener queue connection: A producer or lis-
tener which wants to connect to a queue in order to send
or retrieve messages first contacts the queue management
component and addresses the name of the queue they want
to connect to. As the queue management component holds the
information about the exchanges that compose a queue and
is synced with the monitoring, it will return the address of a
free exchange of the queue to connect to. If the queue does
not exist yet, the queue management component creates it:

1) new exchanges are started.
2) the meta data is updated with the addresses, the location

of the exchanges and the required SLA.
3) the new exchanges are registered with the monitoring

component.
2) Queue scaling out: When the monitoring detects that

the KPIs for a queue are reached, a scaling out action may
be needed in order for the queue to cope with the actual load.
The KPIs that trigger this action are defined in the SLA at the
creation of the queue. They may comprise situations such as,
for example:

• the queue has reached a critical throughput in its actual
exchange configuration.

• average latency of message delivery is higher than a
threshold.

• the average number of producers and listeners connected
to an exchange has reached a critical number.

When any of these situation is detected by the monitoring,
the rules and scaling component triggers a scaling out action
based on the monitoring values, the topology of the existing

exchanges and the SLA. The scaling out of exchanges is
performed following the elastic scaling algorithm presented in
Section III-D. Producers are then relocated to the additional
exchange created which relieves part of the load from the
existing exchanges. This created exchange is then registered
in the queue management component and for monitoring.

3) Queue scaling in: This is the opposite case of the scaling
out situation: an exchange is tagged for imminent shutdown.
This can be caused by situations such as:

• the exchange is underused and the load it actually handles
can be distributed among the other exchanges. In a
cloud pay-per-use model, this means that the cost of
maintaining this instance alive is higher than its benefits
and thus it can be shut down.

• the billing rules state that there is no more credit for that
queue. Exchanges are shut down and the queue is brought
to a minimal service level, as agreed on in the SLA.

These situations are detected by the rules component and
actions are inferred with respect to the scaling rules. When
an exchange is shut down, its connected producers are re-
located on the remaining exchanges, provided by the queue
management and in a load balanced manner.

4) Failover on exchange down: An exchange which en-
counters an outage is detected by the monitoring. The queue
management and the scaling management then relocate the
producers which were connected to that exchange on the
remaining exchanges.

D. The EQS exchange elastic scaling algorithm

The scaling out of exchange instances is based on the elastic
scaling algorithm:

1Queue q ;
2i f q . l o a d > kp i queue
3Exchange new exchange crea teNewExchange ( ) ;
4L i s t<Exchange> L = q . g e t O v e r l o a d e d E x c h a n g e s ( ) ;
5w h i l e ( new exchange . i s N o t O v e r l o a d e d )
6f o r Exchange e i n L
7AND e . ge tNbOfConnec t edProduce r s > 1
8P r o d u c e r P = e . g e t M o s t P r o d u c t i v e P r o d u c e r I D ( ) ;
9P . r e l o c a t e ( new exchange ) ;
10q . g e t L i s t e n e r s . up da t eExch anges ( new exchange ) ;

Basically the algorithm creates a new exchange if a queue
has reached its KPIs (line 2, we do not represent here the
process of checking if the queue is eligible for a scaling
out, for example, if there is enough credit or resource) and
relocates (line 9) for each overloaded exchange (line 4) its
most productive producer (line 8), that is the one which has
sent the biggest number of messages over the previous time
period, on the newly created exchange. It then updates all
the listener clients of the queue to listen to that exchange
(10). The limit situation occurs when an exchange has reached
its KPIs with a single producer connected, in which case it
is not possible to relocate that producer elsewhere. If there
is no available exchange with higher KPIs, advanced actions
such as notifying the producer or the queue owner should be
considered (not shown here).



IV. IMPLEMENTATION

In this section we describe how we have actually imple-
mented EQS and tested it on a cloud infrastructure.

We have decided to start from an existing messaging product
and develop the components of EQS on top of it. The reason
behind this choice is that we want to focus EQS development
on the architecture and the elastic scalability, and delegate
the common messaging functions such as message publish
and subscribe, topic routing, in-memory message caching and
disk swapping, to an existing messaging library. In order to
be able to develop our functions on top of it, the messaging
library would have to remain quite at low-level. We have
settled to develop our prototype of EQS on top of the ZeroMQ
messaging library.

ZeroMQ is a messaging library written in C which handles
communications between sockets. ZeroMQ provides messag-
ing features between sockets, relying on a brokerless architec-
ture where queues are pushed on the edges at each client. The
following delivery models are supported:

• publish-subscribe with basic topic key matching.
• request-reply with advanced distribution patterns.

In the scope of our implementation we will focus on the
publish-subscribe messaging model, but our architecture can
be easily adapted to a request-reply model. We rely on TCP/IP
transport.

A. Producer and listener implementation

We have used the off-the-shelf ZeroMQ implementation
of the publish-subscribe client. A publisher client opens a
ZeroMQ socket, connects it to an endpoint on the network
and starts sending messages. A listener client opens a socket,
connects it to an endpoint, declare a topic key, and starts
consuming messages related to that topic. A listener socket
can connect to multiple publisher sockets at the same time.

B. Exchange implementation

The exchange is implemented as a proxy comprised of
a listener socket on its frontend with a topic key matching
all possible keys and a publisher socket on its backend. It
receives messages from the frontend and resends the message
immediately to the listeners connected to the backend socket.

C. Monitoring, rules and scaling management components

As with the current state of standards in cloud platforms
and infrastructure it is not yet possible to seamlessly merge
custom application monitoring and rules triggering with cloud
management infrastructures, we have decoupled these compo-
nents at each level.

At the infrastructure level, we use the cloud provider metrics
for monitoring the system health. This comprises the following
metrics: CPU usage, memory and bandwidth available. We
also use the alerts and rules triggering methods featured by the
cloud platform management based on these metrics. Actions
based on these metrics are: start-up of a new instance when
available memory is below a threshold and shut-down of an
instance when it is underused.

At the EQS level, we have implemented a specific type
of instance which monitors the health of the exchanges. This
monitoring receives heartbeats and health values of all the
exchanges under its supervision. The monitoring instance
is monitored by the cloud infrastructure monitoring. It also
triggers actions with regard to the elastic scaling algorithm
(see Section III-D).

We make use of the service abstraction provided by existing
cloud platform management tools in order to manage the
metadata of the running exchanges and for the infrastructure
monitoring. Existing platforms which provides these function-
alities comprise for instance Amazon CloudWatch7, Scalr8 and
Rightscale9. The platform management tool that we used in
this case is Scalr. Figure 5 summarizes our implementation
of EQS and shows the integration with the cloud platform
management for each component.

D. Queue management

We have developed a queue management service instance
which stores the meta data of the queues: existing queues
names and the addresses of the exchanges they are made
of. It also stores a basic set of KPI requirements comprised
of available bandwidth and number of processed messages
on the exchange. The producer and listener clients initiate
the connection to an exchange by first contacting the queue
management using request-reply communication. In turn they
receive the address of a free exchange to connect to. The queue
management is synced with the exchange monitoring which
makes it always up to date concerning the available exchanges.
In practice, we have merged the queue management instance
on the same instance as the EQS monitoring instance.

E. Elastic scaling algorithm implementation

The elastic scaling of EQS is decoupled, as is the mon-
itoring, at the cloud infrastructure and EQS levels. First,
exchanges system KPIs are detected by the infrastructure
management which creates a new instance each time the
available memory or bandwidth go below a threshold. When
the new instance is created, the EQS monitoring instance is
notified on this newly created exchange. It then triggers the
scaling algorithm and relocates the most productive producers
from the existing exchanges which are above the KPIs to this
new exchange.

V. EVALUATION

We have validated the elastic scaling ability of our EQS
implementation through a test involving one queue. We start
with an initial queue made of 1 exchange. Producers then start
to connect and gradually increase the load of the queue. The
architecture will be able to automatically scale-out by adding
additional exchanges in order to cope with the load and with
regard to the rules and KPIs. We have used the latest ZeroMQ
version at the time of writing (2.1.7) along with the Java

7Amazon CloudWatch: http://aws.amazon.com/cloudwatch/
8Scalr: https://scalr.net/
9Rightscale: http://www.rightscale.com/

http://aws.amazon.com/cloudwatch/
https://scalr.net/
http://www.rightscale.com/
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Fig. 5. Our implementation of EQS on top of existing cloud management
platforms. Monitoring and scaling management have been decoupled between
infrastructure and EQS levels.

binding (jzmq). Amazon instances of type small have been
used for the exchanges, the monitor, the producer and listener
clients. The hosted version of Scalr has been used to manage
the metadata and to trigger the rules related to instances system
metrics.

A. EQS test workload

Sixteen producers connect at intervals of 60 seconds to the
queue and send messages at a rate of 3,400 messages per
minute with a payload of 5 kilobytes per message. They each
send messages during 45 minutes then disconnect from the
queue. All the producers are hosted on the same instance.
From the beginning, there are twenty listeners connected to
queue. They subscribe to every message of the queue, this
means that each listener receives all the messages produced
by a producer (fan-out). The twenty listeners are hosted on 4
different instances, which makes 5 listeners per instance. The
test is run five times independently at different moments on
the Amazon infrastructure and mean values have been derived.

The rules for the workload are: create a new exchange
instance when its outgoing bandwidth is higher than 15
Mbps/s, and relocate producers on free exchanges when the
exchanges transit more than 15 Mbits/s of messages. The SLA
business rule we set up is to maintain no more than 4 exchange
instances at the same time.

B. Results

Figure 6 shows the number of messages produced by the
producers at each minute of the run and the number of message
that has been processed by the exchanges, that means, the
number of messages that have been received by the exchanges
and transfered to the connected listeners. We can observe that
the infrastructure and EQS monitoring are able to trigger the
right exchanges scale-out actions with regard to the scaling
algorithm which permits the queue to cope with its actual load.
Figure 8 shows the individual number of messages processed
by each of the 4 exchanges of the queue. We observe that
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Fig. 6. EQS results for scenario: 16 producers connect at 60 seconds of
interval, each sending messages of 5 kB at a rate of 3400 messages/min during
45 minutes. This plot represents the average number of messages received
from the exchanges and passed to the listeners over the 5 runs. On overlay
is the total number of messages produced by the 16 producers. Vertical lines
represent the mean minute of the run when a new exchange is started.

over different runs new exchanges are not always started at
the same minute during the test run but within a time interval
of 2-3 minutes. This is due to many factors of the platform we
work on. Firstly, we rely on the Amazon infrastructure which
provides best effort service level what concerns network I/O.
Secondly, we rely on the Scalr platform for the triggering of
infrastructure rules which polls the metrics at intervals of 1
minute. Figure 7 depicts the actual number of messages that
are received by the twenty connected listeners. With this setup
our system is able to handle more than one million messages
per minute with 5 kilobytes of payload.

We have measured the latency of the message delivery on a
subset of 400 messages sent each minute10. Figure 9 represents
the mean latencies of the delivery of those 400 messages at
each minute of the test run. We observe that the mean latency
remains in the same range throughout the run, independently
of the load applied to the queue, thanks to the scaling out of
exchange instances. This variation in the latency results from
the best effort nature of Amazon EC2 network I/O.

It is worth mentioning that we have performed the same
test with the same setup on our private cluster composed
of commodity hardware (gigabit private LAN with max. 1
hop between instances). The mean latency measured then
was under the millisecond for a message. We also achieved
performance 5 times higher without message dropping in our
lab. The depicted results here show the highest throughput that
we could achieve on Amazon without message dropping by
the ZeroMQ library with a setup of 4 exchanges.

VI. DISCUSSION AND FUTURE WORK

The results from the previous section have shown that our
proposed messaging architecture is able to scale by creating
additional exchanges in response to increases in the number
of messages being sent. The elastic scaling ability of the
exchange enables EQS to cope with actual messaging loads.

10In order to avoid clock drifting on cloud instances, the producer and
listener of these 400 messages were hosted on the same instance synced with
a public NTP server using the appropriate hypervisor time management flags.
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Fig. 8. Number of messages processed by the queue exchanges. The plots
depict the mean values and standard deviation computed on 5 independant
runs. At the beginning, only Exchange 1 is active. As producers connect to
the queue and the load increases, Exchanges 2,3 and 4 are started by the rules
and scaling management. The second y-axis on the right depicts the number
of users connected to an exchange corresponding to a processed number of
messages.

What must be also taken in consideration is the scaling of
the management components of EQS. These should also scale
when there are thousands of queues, producers and listeners
to manage, and several millions of exchanges per queue.

In the current design of the queue management system, the
metadata storage and the auto-scaling decision layer are not
scalable. The queue monitoring system is implemented by a
central entity which has a global view and understanding of
the system. The metadata storage maintains the most important
information about the queue composition in terms of existing
exchanges, SLA, geographical locations, their current load and
ability to scale. It is also a central entity.

An evolution of this architecture would be to replace this
central metadata storage by a distributed system on top of a
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Fig. 9. Mean latency of the message delivery and standard deviation during
the run, calculated on 5 different runs. Latency is calculated on a subset of
400 messages each minute.

distributed storage such as HBase [5] or Cassandra [6]. In
front of this storage, we will implement a central queue that
will distribute control events to a set of workers which will in
turn update the metadata and contextual data on the distributed
storage. Going further, we can also imagine implementing the
concept of data affinity by forwarding the metadata update
requests to a worker running on the same machine where the
data is located. In order to implement such mechanisms, we
need to coordinate the event routing with the sharding policy
of the underlying distributed storage. Figure 10 summarizes
this approach. The advantage of having a worker pool is to be
able to smoothly handle multiple requests on the same data
object and even to implement priority rules as described in the
LMAX architecture [7], [8]. This architecture is inspired by the
Staged Event-Driven Architecture (SEDA) concept developed
by [9].

Concerning the infrastructure monitoring system, we can
use an IaaS monitoring subsystem or use existing solutions
[10] used for monitoring large data centers such as Nagios.
These are designed to scale out to very large data centers
composed of hundreds of nodes. Many of those solutions are
also used within cloud providers for the infrastructure man-
agement [11]. If those solutions reveal themselves not adapted
or not scalable enough, we can think of a similar architecture
using a NoSQL storage for the storage of monitoring events,
and a pool of distributed workers for the writing of monitoring
events.

The distributed decision layer is much more complex to
implement. A first simple solution would be to use a SaaS
(Software as a Service) solution such as RightScale or Amazon
CloudWatch. A second solution, much more complex, would
be to implement a distributed CEP (Complex Event Process-
ing) engine. The idea is to organize different layers of CEP
instances with each layer sending higher level information. For
instance, a first set of distributed CEP instances can receive



Fig. 10. Architecture of the distributed metadata management. The Data
Locators are aware of the data sharding policy, such as the consistent hashing
used in Cassandra for example, and can then route the update request to the
right node. Then a stateless worker from a worker pool is assigned to execute
the update request.

information about memory from a subset of brokers of an
exchange, others about number of message in the exchange
for a subset of brokers. This first layer can detect specific
situations and fire higher level information events, such as an
exchange has one of its brokers that will reach a limit and will
not be available for accepting new clients. A second layer of
CEP will be responsible for gathering global information about
all brokers and only take action by correlating events coming
from layer one. In this way, a multi-layered CEP architecture
can be designed for implementing a scalable decision layer.

We have not yet implemented the persistent aspect of the
message queues. The idea would be to forward each message
to a pool of workers dedicated to write messages in the
NoSQL storage. A final acknowledge should guarantee the
message persistence. In case of failure of the exchange during
the message forwarding, the producer client library should be
notified.

An elastic queuing system such as EQS can be used for
communication between applications but also at different
levels of the IaaS management. One of the next steps of
EQS is to implement a PoC of a scalable monitoring system
receiving message probes from a lot of different components
such as VMs (Virtual Machines), application servers, appli-
cations, hardware, switches, and to transport them to a set
of distributed CEP instances. This PoC will be implemented
on OpenStack11. OpenStack is a good example of an IaaS
management implemented using the EDA paradigm. When
a VM provisioning request is sent to the Nova-API module,
a completely distributed orchestration process is launched in
order to create the VM, mount the volumes, and register it to
the network. Each step of this provisioning process is done
through a message queue. However, this queuing system is
currently based on Rabbit MQ and thus is not elastic [12]. EQS

11OpenStack Compute: http://www.openstack.org/projects/compute/

could be used at that level in order to support a completely
elastic provisioning process.

VII. CONCLUSION

Emergence of cloud computing and on-demand resource
usage schemes have enabled applications to scale out elas-
tically. In this context, we have presented EQS, and elastic
message queue which is able to scale out elastically in order
to adapt with the existing load. This type of message queue is
suitable for large scale applications built around event-driven
architectures but also for cloud infrastructures management.
We have shown with load tests that EQS is able to scale out
elastically in order to adapt with the applied messaging load.
Furthermore, the scaling out is linear which means that the
overall performance of EQS is linearly related to the number of
living instances. As EQS is built on a distributed architecture,
each of its component can be scaled out independently. We
have proposed architecture tracks for all the management
components of EQS which can make them scale elastically,
as with the current state of the implementation only the
messaging component is able to scale out elastically. We have
also discussed about possible integration of EQS to the cloud
infrastructure management.
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